Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.12.22278203

ABSTRACT

ImportanceFew US studies have reexamined risk factors for SARS-CoV-2 positivity in the context of widespread vaccination and new variants or considered risk factors for co-circulating endemic viruses, such as rhinovirus. ObjectiveTo understand how risk factors and symptoms associated with SARS-CoV-2 test positivity changed over the course of the pandemic and to compare these to the factors associated with rhinovirus test positivity. DesignThis test-negative design study used multivariable logistic regression to assess associations between SARS-CoV-2 and rhinovirus test positivity and self-reported demographic and symptom variables over a 22-month period. SettingKing County, Washington, June 2020-April 2022 Participants23,278 symptomatic individuals of all ages enrolled in a cross-sectional community surveillance study. ExposuresSelf-reported data for 15 demographic and health behavior variables and 16 symptoms. Main Outcome(s) and Measure(s)RT-PCR confirmed SARS-CoV-2 or rhinovirus infection. ResultsClose contact with a SARS-CoV-2 case (adjusted odds ratio, aOR 4.3, 95% CI 3.7-5.0) and loss of smell/taste (aOR 3.7, 95% CI 3.0-4.5) were the variables most associated with SARS-CoV-2 test positivity, but both attenuated during the Omicron period. Contact with a vaccinated case (aOR 2.4, 95% CI 1.7-3.3) was associated with a lower odds of test positivity than contact with an unvaccinated case (aOR 4.4, 95% CI 2.7-7.3). Sore throat was associated with Omicron infection (aOR 2.3, 95% CI 1.6-3.2) but not Delta. Vaccine effectiveness for participants fully vaccinated with a booster dose was 43% (95% CI 11-63%) for Omicron and 92% (95% CI 61-100%) for Delta. Variables associated with rhinovirus test positivity included age <12 years (aOR 4.0, 95% CI 3.5-4.6) and reporting a runny or stuffy nose (aOR 4.6, 95% CI 4.1-5.2). Race, region, and household crowding were significantly associated with both SARS-CoV-2 and rhinovirus test positivity. Conclusions and RelevanceEstimated risk factors and symptoms associated with SARS-CoV-2 infection have changed over time. There was a shift in reported symptoms between the Delta and Omicron variants as well as reductions in the protection provided by vaccines. Racial and socioeconomic disparities persisted in the third year of SARS-CoV-2 circulation and were also present in rhinovirus infection, although the causal pathways remain unclear. Trends in testing behavior and availability may influence these results. Key Points QuestionWhat are the characteristics associated with SARS-CoV-2 and rhinovirus infection? FindingsIn this test-negative design study of 23,278 participants, reporting close contact with a SARS-CoV-2 case was the strongest risk factor associated with test positivity. Loss of smell and taste was associated with the Delta variant, but not the Omicron variant. Vaccination and prior infection provided greater protection against Delta infection than Omicron Infection. Young age was the strongest predictor of rhinovirus positivity. Sociodemographic disparities were present for both SARS-CoV-2 and rhinovirus. MeaningMonitoring factors associated with respiratory pathogen test positivity remains important to identify at-risk populations in the post-SARS-CoV-2 pandemic period.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.15.21253227

ABSTRACT

BackgroundTesting programs have been utilized as part of SARS-CoV-2 mitigation strategies on university campuses, and it is not known which strategies successfully identify cases and contain outbreaks. ObjectiveEvaluation of a testing program to control SARS-CoV-2 transmission at a large university. DesignProspective longitudinal study using remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was (1) exposed to a known case, developed new symptoms, or reported high-risk behavior, (2) a member of a group experiencing an outbreak, or (3) at baseline upon enrollment. SettingAn urban, public university during Autumn quarter of 2020 ParticipantsStudents, staff, and faculty. MeasurementsSARS-CoV-2 PCR testing was conducted, and viral genome sequencing was performed. ResultsWe enrolled 16,476 individuals, performed 29,783 SARS-CoV-2 tests, and detected 236 infections. Greek community affiliation was the strongest risk factor for testing positive. 75.0% of positive cases reported at least one of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). 88.1% of viral genomes (52/59) sequenced from Greek-affiliated students were genetically identical to at least one other genome detected, indicative of rapid SARS-CoV-2 spread within this group, compared to 37.9% (11/29) of genomes from non-Greek students and employees. LimitationsObservational study. ConclusionIn a setting of limited resources during a pandemic, we prioritized testing of individuals with symptoms and high-risk exposure during outbreaks. Rapid spread of SARS- CoV-2 occurred within outbreaks without evidence of further spread to the surrounding community. A testing program focused on high-risk populations may be effective as part of a comprehensive university-wide mitigation strategy to control the SARS-CoV-2 pandemic.

3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.30.20204230

ABSTRACT

The rapid spread of SARS-CoV-2 has gravely impacted societies around the world. Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in Washington State (USA) was shaped by differences in timing of mitigation strategies across counties, as well as by repeated introductions of viral lineages into the state. Additionally, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G, but not the other variant (614D) into the state. At an individual level, we see evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we do not find any evidence that the 614G variant impacts clinical severity or patient outcomes. Overall, this suggests that at least to date, the behavior of individuals has been more important in shaping the course of the pandemic than changes in the virus.

4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.02.20051417

ABSTRACT

Following its emergence in Wuhan, China, in late November or early December 2019, the SARS-CoV-2 virus has rapidly spread throughout the world. On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Genome sequencing of SARS-CoV-2 strains allows for the reconstruction of transmission history connecting these infections. Here, we analyze 346 SARS-CoV-2 genomes from samples collected between 20 February and 15 March 2020 from infected patients in Washington State, USA. We found that the large majority of SARS-CoV-2 infections sampled during this time frame appeared to have derived from a single introduction event into the state in late January or early February 2020 and subsequent local spread, strongly suggesting cryptic spread of COVID-19 during the months of January and February 2020, before active community surveillance was implemented. We estimate a common ancestor of this outbreak clade as occurring between 18 January and 9 February 2020. From genomic data, we estimate an exponential doubling between 2.4 and 5.1 days. These results highlight the need for large-scale community surveillance for SARS-CoV-2 introductions and spread and the power of pathogen genomics to inform epidemiological understanding.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Infections
SELECTION OF CITATIONS
SEARCH DETAIL